SEPARATING POINTS FROM CLOSED CONVEX SETS OVER ORDERED FIELDS AND A METRIC FOR \tilde{R}^n

ROBERT O. ROBSON

ABSTRACT. Let R be an arbitrary ordered field, let \overline{R} be a real closure, and let \widetilde{R} and \widetilde{R}^n denote the real spectra of $\overline{R}[X]$ and $\overline{R}[X_1,\ldots,X_n]$. We prove that a closed convex subset in R^n may be separated from a point not in it via a continuous "linear" functional taking values in \widetilde{R} and that there is a \widetilde{R} -valued metric on \widetilde{R}^n . The methods rely on the ultrafilter interpretation of points in \widetilde{R}^n and on the existence of suprema and infima of sets in \widetilde{R} .

Introduction

A basic result which uses the completeness and order relation on R is

Theorem I (for \mathbb{R}). Let $C \subset \mathbb{R}^n$ be a closed convex set and let $\mathbf{p} \in \mathbb{R}^n \setminus C$. Then there exists a linear function

$$L(\mathbf{x}) = \mathbf{a} \cdot (\mathbf{x} - \mathbf{b})$$

such that $L(\mathbf{p}) < 0$ and $L(\mathbf{q}) > 0$ for all $\mathbf{q} \in C$. \square

Theorem I remains true if \mathbb{R}^n is replaced by a locally convex real vector space and \mathbf{p} is replaced by an arbitrary compact set [5, 3.3, Satz 4] but we are more interested in the remark that the *statement* of Theorem I makes sense if \mathbb{R} is replaced by any ordered field R. It is false as stated for every $R \neq \mathbb{R}$, but if we replace L by an \widetilde{R} -valued linear function where $\widetilde{R} := \operatorname{Sper} R[X]$ is the real spectrum of R[X], we obtain

Theorem I. Let R be any ordered field, let $C \subset R^n$ be a closed convex set, and let $\mathbf{p} \in \mathbb{R}^n \setminus C$. Then there exists a continuous \widetilde{R} -valued linear function $L: R^n \to \widetilde{R}$ such that $L(\mathbf{p}) < 0$ and $L(\mathbf{q}) > 0$ for all $\mathbf{q} \in C$.

In order to prove Theorem I for general R, we let \overline{R} be a real closure of R and extend the Euclidean norm to the space

$$\widetilde{R}^n := \operatorname{Sper} \overline{R}[X_1, \ldots, X_n],$$

which may be thought of as consisting of those points in $\operatorname{Sper} R[X_1, \ldots, X_n]$ which induce the given order on R. This extended norm does not give us

Received by the editors October 25, 1989. Presented at the AMS Meeting #858, April 20, 1990, in Albuquerque, New Mexico.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46A15, 10M15, 52A20. Key words and phrases. Convex set, real spectrum, ordered fields, real closed field, metric space.

90 R. O. ROBSON

a metric on \widetilde{R}^n because \widetilde{R}^n is not equipped with an addition, and we cannot define an inner product on \widetilde{R}^n as is discussed after Definition 2 in §3. However, with virtually no fudging of the definitions, we are able to prove

Theorem II. Let R be any ordered field. Then there is a metric

$$\mu: \widetilde{R}^n \times \widetilde{R}^n \to \widetilde{R}$$

which extends the Euclidean distance function.

The point of this paper, then, is that the real spectrum provides the correct tool for both compactifying and completing general ordered fields with a view towards preserving at least some of the structure familiar from linear analysis over \mathbb{R} . We assume a certain degree of familiarity with the spaces \widetilde{R} and \widetilde{R}^n . In particular we assume that the reader is familiar with

- (1) the various types of points in \tilde{R} for general real closed R,
- (2) the description given in [7 §2]
- (3) the "ultrafilter theorem" [3] and ultrafilter arguments, and
- (4) semialgebraic maps $f: \mathbb{R}^n \to \mathbb{R}$ and their extensions $\widetilde{f}: \widetilde{\mathbb{R}}^n \to \widetilde{\mathbb{R}}$.

All of the necessary background is available in [2, Chapter 7], [1], and [7, §2].

The paper is organized as follows: In §1 we present a simple counterexample showing why Theorem I is false if we only allow R-valued linear functions, and in §2 we present an elementary proof of Theorem I for \mathbb{R} . In §3 we explain what we mean by a \widetilde{R} -valued linear function and prove a continuity result for these functions. In §4 we isolate two results needed to modify the proof given in §2, and in §5 we prove Theorem I for general R. In §6 we generalize the notion of "slices" from [7] to one called "rips". Rips allow us to add points in \widetilde{R}^n and to compare the resulting sums so that we may interpret the triangle inequality. In §7 we define μ and prove Theorem II.

We point out right away that, for the purposes of our proofs, we will assume that R is real closed. This is no loss of generality since if \overline{R} is a real closure of the ordered field R and $n \ge 1$, then $\widetilde{R}^n = \widetilde{R}^n$ as we have defined it.

The motivation for this paper came from Bruce Reznick who conjectured that Theorem I (as stated for \mathbb{R}) failed for nonarchimedean R during a talk on blenders in May, 1989. A few weeks later Tom Craven pointed out the counterexample in §1 for the case $R=\mathbb{Q}$. The author wishes to thank both Reznick and Craven for their inspiration and an anonymous referee for suggesting some clarifications and simplifications which have been incorporated.

1. A COUNTEREXAMPLE

Suppose $R \neq \mathbb{R}$ and that α is a (finite) Dedekind cut of R which is not represented by an element of R. In keeping with notation from [7, §2], we will represent α by its *left set* α_l and its *right set* α_r . Thus α_l and α_r are

We use the word "interval" to include singletons, half-infinite, half-open, closed, infinite, and half-infinite intervals—in short, any semialgebraically connected subset of R.

two nonempty open half-infinite intervals with the properties that $\alpha_l \leq \alpha_r$, meaning that $x \in \alpha_l$, $y \in \alpha_r \Rightarrow x \leq y$, and that $\alpha_l \cup \alpha_r = R$. In the case at hand, $\alpha_l < \alpha_r$.

Now consider the upper half-plane $H\subset R^2$ whose boundary is the non-existent line $x_2=\alpha x_1$. Thus H consists of all points $(0,x_2)$ with $x_2\geq 0$ plus all $(x_1,tx_1)\in R^2$ such that

(1)
$$x_1 \ge 0$$
 and $t \in \alpha_r$ or $x_1 \le 0$ and $t \in \alpha_l$.

H is closed and convex, but there is no way to separate H from $any \ \mathbf{p} \notin H$ using a line. To see this, suppose $t \in \alpha_r$ and consider the line $x_2 = tx_1 + b$. Using the fact that α_r has no left endpoint, we may choose x_1 positive and large enough so that $tx_1 + b = t'x_1$ with t' still in α_r . Thus $(x_1, tx_1 + b) = (x_1, t'x_1) \in H$. The same idea works for $t \in \alpha_l$ and the lines $x_1 = c$. In other words, every line intersects H. This shows that Theorem I as stated for \mathbb{R} needs some modification for other R.

2. A proof of Theorem I for \mathbb{R}

This section contains a very simple proof of Theorem I for $\mathbb R$ based upon the following lemma:

Lemma 1. Let \mathbf{p} , $\mathbf{q} \in \mathbb{R}^n$ and suppose that $\mathbf{p} \cdot \mathbf{q} < \|\mathbf{p}\|^2$. Then for all sufficiently small t > 0 we have

(2)
$$||t\mathbf{q} + (1-t)\mathbf{p}||^2 < ||\mathbf{p}||^2.$$

Proof. Use the fact that

$$||t\mathbf{q} + (1-t)\mathbf{p}||^2 - ||\mathbf{p}||^2 = t\{t(||\mathbf{q}||^2 + ||\mathbf{p}||^2 - 2\mathbf{q} \cdot \mathbf{p}) + 2(\mathbf{q} \cdot \mathbf{p} - ||\mathbf{p}||^2)\}.$$

Proof of Theorem I over \mathbb{R} . We may assume that $\mathbf{p} = \mathbf{0}$. Let $\mathbf{a} \in C$ be a point with minimal distance to $\mathbf{0}$, i.e., with minimal Euclidean norm. The existence of \mathbf{a} is implied by the completeness of \mathbb{R}^n . Lemma 1 and convexity imply that

$$\mathbf{a} \cdot \mathbf{x} > \|\mathbf{a}\|^2$$

for all $x \in C$. Thus $L(x) = a \cdot (x - a/2)$ is the sought after function. \Box

In §5 we carry out this proof for general R, but first we need to compactify the domain R^n , complete the range R, and define new linear functions. This is done via the real spectrum, starting in the next section.

3. \widetilde{R} -valued linear functions

The semialgebraic subsets of R^n form a boolean algebra and \widetilde{R}^n may be defined as the set of ultrafilters of this algebra. (Remember, we are assuming that R is real closed.) We will use this definition exclusively and denote points of \widetilde{R}^n by lower case Greek letters. The topology on \widetilde{R}^n is that generated by

the sets

$$\widetilde{U} := \{ \alpha \in \widetilde{R}^n \mid U \in \alpha \}$$

for open semialgebraic sets $U \subset \mathbb{R}^n$. $\widetilde{\mathbb{R}}^n$ is quasicompact but not Hausdorff. If β is in the closure of α we say that α specializes to β and write $\alpha \to \beta$. The concepts of closed and bounded for points are defined by

Definition 1. A point $\alpha \in \widetilde{R}^n$ is *closed* if it has no proper specializations and *bounded* if it contains a bounded set.

If $A \subseteq R^n$ and $B \subseteq R$ are semialgebraic sets, and f is a map with semialgebraic graph, then f(A) and $f^{-1}(B)$ are also semialgebraic [2]. It is easy to verify that

$$\{f(A) \mid A \in \alpha\}$$

generates an ultrafilter if $\alpha \in \widetilde{R}^n$ is an ultrafilter. Thus f induces a function $\widetilde{f}: \widetilde{R}^n \to \widetilde{R}$ where $\widetilde{f}(\alpha)$ is defined to be the ultrafilter in \widetilde{R} generated by (4). If f is also continuous, then \widetilde{f} is continuous as a function from \widetilde{R}^n to \widetilde{R} . Details appear in [1], [2, 7.2.8], and [2, 7.3].

As a particular example of this, fix $x \in R^n$ and consider the dual linear function

$$(5) L_{\mathbf{v}}(\mathbf{y}) := \mathbf{x} \cdot \mathbf{y}.$$

Then $L_{\mathbf{x}}$ is a continuous semialgebraic function, so we may extend it to a function

$$(6) \widetilde{L}_{\mathbf{v}}: \widetilde{R}^n \to \widetilde{R}$$

whose value at the ultrafilter α is computed by considering each semialgebraic subset $A \in \alpha$ and dotting each point in A with x. This produces a semialgebraic subset of R, and the set of these sets forms an ultrafilter $\widetilde{L}_{\mathbf{x}}(\alpha)$ in \widetilde{R} .

This process may be dualized to produce a function

(7)
$$L_{\alpha}: \mathbb{R}^n \to \widetilde{\mathbb{R}}, \quad \mathbf{x} \mapsto L_{\mathbf{x}}(\alpha).$$

Definition 2. An \widetilde{R} -valued linear function is a map $L: \mathbb{R}^n \to \widetilde{R}$ of the form $L(\mathbf{x}) = L_{\alpha}(\mathbf{x} - \mathbf{b})$ with L_{α} as in (7) and $\mathbf{b} \in \mathbb{R}^n$.

We remark that extending L_a to all of \widetilde{R}^n , i.e., defining an inner product on \widetilde{R}^n , is too much to ask for. Indeed, for n=1 this would define a multiplication on \widetilde{R} , and this is hopeless if R is nonarchimedean. To see why, let η be the ultrafilter of semialgebraic sets which span the gap between the positive infinitesimals and the positive noninfinitesimal elements (with respect to \mathbb{Q}), and let ζ be the ultrafilter spanning the gap between the positive finite and the positive infinite elements. The product of any set from η with any set from ζ contains all positive, finite, noninfinitesimal elements. Thus " $\eta \cdot \zeta$ " is contained in an infinite number of ultrafilters.

Also, the function $L_{\eta}(x)$ jumps from η to ζ as the argument $x \in R$ crosses the gap ζ . L_{η} is therefore not a slice [7] and certainly cannot be extended to a continuous function $\widetilde{R}^n \to \widetilde{R}$. In general, L_{α} need not even be continuous as function from $R^n \to \widetilde{R}$ as can be seen by taking n=1 and $\alpha=+\infty$. But we do have

Proposition 1. If α is closed and bounded, then the function L in Definition 2 is continuous. For any α we have the following "sublinearity" property: If $s_1 \leq L(\mathbf{x}) \leq s_2$ and $t_1 \leq L(\mathbf{y}) \leq t_2$ for $s_1, s_2, t_1, t_2 \in R$, then $s_1 + s_2 \leq L(\mathbf{x} + \mathbf{y}) \leq t_1 + t_2$.

Proof. We may assume that $L = L_{\alpha}$. A subbasic open set in \widetilde{R} consists of the set \widetilde{I} of ultrafilters containing an open interval $I = (a, b) \subset R$. We have

(8)
$$L_{\alpha}(\mathbf{x}) \in \widetilde{I}$$
 if and only if $\mathbf{x} \cdot A \subseteq I$ for some $A \in \alpha$.

Now, if $L_{\alpha}(\mathbf{x}) \in \widetilde{I}$, there must be some closed bounded $B \in \alpha$ such that $\mathbf{x} \cdot B$ is a finite union of (necessarily closed and bounded) subintervals of (a,b). For otherwise every closed bounded set $B \in \alpha$ would contain points in the semialgebraic set

$$K := \{ \mathbf{y} \mid \mathbf{x} \cdot \mathbf{y} \le a \text{ or } \mathbf{x} \cdot \mathbf{y} \ge b \}.$$

Since every closed semialgebraic set in α contains a closed bounded semialgebraic set in α , the set of $B\cap K$ with $B\in \alpha$ and B closed would then have the finite intersection property, from which the existence of a specialization β of α with $L_{\beta}(\mathbf{x}) \not\in (a,b)$ would follow. Since $L_{\beta}(\mathbf{x}) \neq L_{\alpha}(\mathbf{x})$, we see $\beta \neq \alpha$, contradicting the assumption that α is closed.

We have seen that there is a closed bounded $B \in \alpha$ such that $\mathbf{x} \cdot B \subseteq [c, d]$ with

$$(9) a < c < d < b.$$

Using (9) and a bound on the norm of points in B it is straightforward to find an $\varepsilon > 0$ so that $\mathbf{z} \cdot B \subseteq I$ whenever $\|\mathbf{x} - \mathbf{z}\| < \varepsilon$. This implies $L_{\alpha}(\mathbf{z}) \in \widetilde{I}$ whenever $\|\mathbf{x} - \mathbf{z}\| < \varepsilon$ and establishes continuity.

For the last statement, we note that there is a set $A \in \alpha$ such that for every $\mathbf{a} \in A$ we have $s_1 \leq \mathbf{a} \cdot \mathbf{x} \leq s_2$ and $t_1 \leq \mathbf{a} \cdot \mathbf{y} \leq t_2$ and hence $s_1 + s_2 \leq \mathbf{a} \cdot (\mathbf{x} + \mathbf{y}) \leq t_1 + t_2$. \square

Finally, we point out that if R is an arbitrary ordered field and $\alpha=\mathbf{x}$ is a rational point in \overline{R}^n over a real closure of R, then L_{α} is just the restriction of the dot product with \mathbf{x} to R^n .

4. Some groundwork

The purpose of this section is to recall some key results on \widetilde{R} from [7] and to isolate a slightly technical but trivial lemma on abstract functions.

In [7, §2] it is shown that the points $\alpha \in R$ for R real closed may be represented as pairs (α_l, α_r) of subsets of R, called *slices*, satisfying $\alpha_l \leq \alpha_r$

and $\alpha_l \cup \alpha_r = R$. Specifically, for a point $x \in R$ we have

(10)
$$x \in \alpha_l \text{ if and only if } (-\infty, x] \in \alpha, \\ x \in \alpha_r \text{ if and only if } [x, +\infty) \in \alpha.$$

The crucial result for us is

Proposition 2. \widetilde{R} is totally ordered with

(11)
$$\alpha \leq \beta$$
 if and only if $\alpha_i \subseteq \beta_i$ and $\beta_r \subseteq \alpha_r$.

Every subset of \widetilde{R} has both a supremum and an infimum in \widetilde{R} . Proof. [7, §2]. \square

The technical result we need, which we state in more generality than necessary, is a souped-up version of the result that the extension of a continuous semialgebraic function to \widetilde{R}^n assumes a minimum on a closed subset: Let $K \subseteq \widetilde{R}^n$ be closed and let $f: R^n \to R$ be a continuous semialgebraic function. Let

$$\lambda := \inf_{\alpha \in K} \widetilde{f}(\alpha).$$

In addition, let $\{g_s\}_{s\in\mathscr{S}}$ be a family of continuous semialgebraic functions from R^n to R and let $\{\kappa_s\}_{s\in\mathscr{S}}$ be a family of closed points in \widetilde{R} such that for any finite subset $s_1,\ldots,s_m\in\mathscr{S}$ and any $\varepsilon\in R$ with $\varepsilon\geq\lambda$ there are points $\alpha\in K$ such that simultaneously $\widetilde{f}(\alpha)\leq\varepsilon$ and $\widetilde{g}_{s_i}(\alpha)\geq\kappa_{s_i}$ for $i=1,\ldots,m$.

Lemma 2. Under the hypotheses just given there is a closed point $\zeta \in K$ with $\widetilde{f}(\zeta) = \lambda$ and $g_s(\zeta) \ge \kappa_s$ for all $s \in \mathscr{S}$. Proof. The sets

$$K_{\varepsilon, s_1, \ldots, s_m} := \{ \alpha \in K \mid \widetilde{f}(\alpha) \le \varepsilon \text{ and } \widetilde{g}_{s_i}(\alpha) \ge \kappa_{s_i} \text{ for } i = 1, \ldots, m \}$$

are closed and have the finite intersection property. Therefore there is a closed point ζ in their intersection. \square

5. Proof of Theorem I

Let $C \subset \mathbb{R}^n$ be closed and convex and assume that $0 \notin C$ with the intention of proving Theorem I. Let

$$N^{2}(\mathbf{x}) = \|\mathbf{x}\|^{2} = \sum_{i=1}^{n} x_{i}^{2}$$

be the square of the Euclidean norm, which is a continuous semialgebraic function. The following is a version of Lemma 1 from §2:

Lemma 3. Let \mathbf{p} and $\mathbf{q}_1, \ldots, \mathbf{q}_m$ be finitely many points in C. Then there is a point $\mathbf{a} \in C$ such that $N(\mathbf{a}) \leq N(\mathbf{p})$ and such that for $i = 1, \ldots, m$ we have

$$\mathbf{q}_i \cdot \mathbf{a} \ge N^2(\mathbf{a}).$$

Proof. We might as well assume that C is the convex hull of the \mathbf{q}_i . This is a closed bounded semialgebraic set, so there is a point \mathbf{a} in it of minimal norm [2, 2.5.8]. The calculation used to prove Lemma 1 is valid over any R, from which (12) follows. \square

The same argument works in the case of an arbitrary closed bounded semi-algebraic set C and (using the fact that a semialgebraic function achieves a maximum on C as well) yields

Lemma 4. If C is a closed bounded semialgebraic set in \mathbb{R}^n which does not contain 0, then there is a vector $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{x} \cdot \mathbf{C}$ is contained in a closed interval [a, b] with $0 < a \le b < \infty$. \square

Proof of Theorem I. Let K be the closure of C in \widetilde{R}^n and let

$$\lambda := \inf_{\mathbf{q} \in C} N(\mathbf{q}).$$

Since C is closed, we have $0^+ < \lambda$, so we may choose a $z \in R$ with $0 < z \le \lambda$. We now consider the semialgebraic function N, the family $\{L_{\mathbf{q}}\}_{\mathbf{q} \in C}$ of semialgebraic functions, and the constant family $\kappa_{\mathbf{q}} = z^2$. If $\varepsilon \ge \lambda$, there is a point $\mathbf{p} \in C$ with $N(\mathbf{p}) \le \varepsilon$. Lemma 3 says that this setup satisfies the hypotheses of Lemma 2, so we find a closed $\zeta \in K$ such that

(13)
$$\widetilde{N}(\zeta) = \lambda \text{ and } \widetilde{L}_{\mathbf{q}}(\zeta) \ge z^2 \text{ for all } \mathbf{q} \in C.$$

Let \widetilde{L}_{ζ} be defined as in (7). From (13) we see both that ζ is bounded and that $\widetilde{L}_{\zeta}(\mathbf{q}) \geq z^2$ for $\mathbf{q} \in C$. By Proposition 1 the function

$$L(\mathbf{x}) = \widetilde{L}_{\zeta}(\mathbf{x} - \mathbf{b})$$

fulfills the requirements of Theorem I for any **b** with $-z^2/2 < \tilde{L}_r(-\mathbf{b}) < 0$.

To see that such a **b** exists, note that ζ contains a closed bounded B which does not contain 0. We now apply Lemma 4 to B and let $\mathbf{b} = -\frac{z^2}{2b}\mathbf{x}$ with \mathbf{x} and b as in the lemma. \square

6. SLICES AND RIPS

In the description of \widetilde{R} from [7], the set α_l is called the *left set* of α and consists of all $x \in R$ with $x \leq \alpha$, while α_r is called the *right set* of α and consists of all x with $\alpha_r \leq x$. If we try to add two points α and β by adding their left and right sets, we see that

$$\alpha_l + \beta_l \le \alpha_r + \beta_r$$

and also that

(14)
$$x \in \alpha_l + \beta_l \text{ and } y < x \Rightarrow y \in \alpha_l + \beta_l,$$

$$x \in \alpha_r + \beta_r \text{ and } y > x \Rightarrow y \in \alpha_r + \beta_r,$$

but in general there is a gap between the set sums in (14). For example, the point 2 is in neither the sum of the left sets nor in the sum of the right sets of " $1^- + 1^+$ ". In the nonarchimedean case entire intervals may be left out.

For this reason we are led to consider more general pairs

(15)
$$\zeta = (\zeta_I, \zeta_r)$$

of left and right sets and define

Definition 3. A rip is a pair (15) satisfying

(17)
$$\zeta_{l} \leq \zeta_{r},$$

$$x \in \zeta_{l} \text{ and } y < x \Rightarrow y \in \zeta_{l}, \text{ and } x \in \zeta_{r} \text{ and } y > x \Rightarrow y \in \zeta_{r}.$$

Thus points in \widetilde{R} are special types of rips. If ζ and ξ are rips, we define

$$\zeta + \xi = (\zeta_l + \xi_l, \zeta_r + \xi_r),$$

which is again a rip. Next, we borrow from John Conway's philosophy (used to define the ordering on the surreal numbers in [JC, Chapter 1]) and define $\zeta \leq \xi$ unless there is an obstruction to this inequality. An obstruction is a point $x \in R$ with either $\xi < x \leq \zeta$ or $\xi \leq x < \zeta$. We interpret $\xi \leq x$ to mean that $x \in \xi_r$ and $\xi < x$ to mean that $x \in \xi_r \setminus \xi_l$. There is no such obstruction x if

$$\zeta_i \cap \xi_r \setminus \xi_i = \zeta_i \cap \xi_r \setminus \zeta_r = \emptyset$$
,

which may be rephrased as

Definition 4. Let ζ and ξ be two rips. We define $\zeta \leq \xi$ if and only if and $(\zeta_l \cap \xi_r) \subseteq (\zeta_r \cap \xi_l)$.

Proposition 3. The " \leq "-relation on rips extends the total ordering on \widetilde{R} . Given two rips ζ and ξ , either $\zeta \leq \xi$, or $\xi \leq \zeta$ or both.

Proof. The first statement follows from the development of Definition 4 and can be checked by looking at cases. To prove the second statement, we need to exclude the possibility that there are $x, y \in R$ with

(18)
$$x \in \zeta_l \cap \xi_r \text{ and } x \notin \zeta_r \cap \xi_l, \\ y \in \zeta_r \cap \xi_l \text{ and } y \notin \zeta_l \cap \xi_r.$$

But if (18) holds, then $x \in \zeta_l$ and $y \in \zeta_r$ imply that $x \le y$, while $x \in \xi_r$ and $y \in \xi_l$ imply that $x \ge y$. Hence x = y, but now (18) is clearly contradictory. \square

7. The metric μ

To define μ , consider α , $\beta \in \widetilde{R}^n$. If $A \in \alpha$ and $B \in \beta$, we define

(19)
$$d(A, B) := \inf_{\substack{\mathbf{a} \in A \\ \mathbf{b} \in B}} \|\mathbf{a} - \mathbf{b}\|.$$

Note that the infimum in (19) is to be taken not in R (where it need not exist) but in \widetilde{R} . We then go on to define

(20)
$$\mu(\alpha, \beta) := \sup_{\substack{A \in \alpha \\ B \in \beta}} d(A, B)$$

where the supremum is taken in \tilde{R} as well. Interpreting the values of μ as rips for the triangle inequality, we have:

Theorem II. The function $\mu: \widetilde{R}^n \times \widetilde{R}^n \to \widetilde{R}$ is a positive definite symmetric function satisfying the triangle inequality. Moreover, if \mathbf{a} , $\mathbf{b} \in R^n \subset \widetilde{R}^n$, then $\mu(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} - \mathbf{b}\|$.

Proof. Symmetry is obvious from the definition as is the fact that $\mu(\alpha, \beta) \ge 0$. For the rest of the proof we let $\alpha, \beta, \gamma \in \widetilde{R}^n$.

Suppose $\mu(\alpha, \beta) = 0$. Since $\{x \in R \mid x > 0\}$ has the infimum 0^+ in \widetilde{R} , every set $A \in \alpha$ must have zero distance to every set $B \in \beta$. In other words, $A \cap B \neq \emptyset$ for every $A \in \alpha$ and $B \in \beta$. Thus $\alpha \cup \beta$ is a filter, which implies $\alpha = \beta$ since both are ultrafilters. Thus μ is positive definite.

The triangle inequality states that

$$\mu(\alpha, \gamma) \leq \mu(\alpha, \beta) + \mu(\beta, \gamma).$$

To verify this we need to show that

$$(21) \quad \left(\mu(\alpha, \gamma)_{l} \cap \left(\mu(\alpha, \beta)_{r} + \mu(\beta, \gamma)_{r}\right)\right) \subseteq \left(\mu(\alpha, \gamma)_{r} \cap \left(\mu(\alpha, \beta)_{l} + \mu(\beta, \gamma)_{l}\right)\right).$$

So suppose there is a point z in the left-hand set given in (21). Since $z \in \mu(\alpha, \beta)_r + \mu(\beta, \gamma)_r$, there are points $x, y \in R$ such that x + y = z and such that given any $A \in \alpha$, $B \in \beta$, and $C \in \gamma$ there are points $\mathbf{a} \in A$, $\mathbf{b} \in B$ and $\mathbf{b}' \in B$, $\mathbf{c} \in C$ with

$$\|\mathbf{a} - \mathbf{b}\| \le x \quad \text{and} \quad \|\mathbf{b}' - \mathbf{c}\| \le y.$$

Fixing A, B, and C, consider the set

$$B' := \{ \mathbf{b} \in B \mid d(A, \{\mathbf{b}\}) \le x \}.$$

We must have $B' \in \beta$, for otherwise its complement would be in β and (22) could not hold for any $\mathbf{b} \in B'$. Now consider the set

(23)
$$B'' := \{ \mathbf{b}' \in B' \mid d(\{\mathbf{b}'\}, C) \le y \}.$$

Again, we must have $B'' \in \beta$. But this implies that $d(A, C) \le z$ for any $A \in \alpha$ and $C \in \gamma$. Thus we conclude that $z \in \mu(\alpha, \gamma)_r$.

By assumption, $z \in \mu(\alpha, \gamma)_l$. Thus there are sets $A \in \alpha$ and $C \in \gamma$ with $d(A, C) \geq z$. Fix these sets. Suppose there were an $E \in \beta$ with $d(A, \{e\}) < x$ for all $e \in B$. By intersecting E with B'' from (23) we would obtain d(A, C) < z. Thus the set

$$E := \{ \mathbf{b} \in B' \mid d(A, \{\mathbf{b}\}) = x \}$$

is in β , from which we see that $x \in \mu(\alpha, \beta)_l$. Similarly, $y \in \mu(\beta, \gamma)_l$, and so $z = x + y \in \mu(\alpha, \beta)_l + \mu(\beta, \gamma)_l$, establishing (21). \square

98 R. O. ROBSON

Some examples. In order to illustrate μ , we state (without proof) some values in a few simple cases. First, a table of values for pairs of points in \widetilde{R} with the first point specializing to 1 and the second to 2:

$$\begin{array}{lll} \mu(1^-,\,2^-) = 1^-\,, & \mu(1\,,\,2^-) = 1^-\,, & \mu(1^+,\,2^-) = 1^+\,, \\ \mu(1^-\,,\,2) = 1^+\,, & \mu(1\,,\,2) = 1\,, & \mu(1^+\,,\,2) = 1^-\,, \\ \mu(1^-\,,\,2^+) = 1^+\,, & \mu(1\,,\,2^+) = 1^+\,, & \mu(1^+\,,\,2^+) = 1^-\,. \end{array}$$

For a slightly more complicated case, consider the two-dimensional point $\alpha \in \mathbb{R}^2$ consisting of all semialgebraic subsets A containing a set of the form $\{(x,e^x)\mid 0< x<\varepsilon\}$ for some $\varepsilon>0$. Let β be the one-dimensional point consisting of all semialgebraic sets containing some piece of the algebraic half-branch y=0, x>0 at (0,0). Then $\mu(\alpha,\beta)=1^+$.

In order to clarify the nature of μ , we point out

Proposition 4. Suppose α , $\beta \in \widetilde{R}^n$ and α is bounded. Then $\mu(\alpha, \beta) = 0^+$ if and only if α and β are distinct but have a common specialization.

Proof. Suppose $\mu(\alpha, \beta) = 0^+$. Let $A \in \alpha$ be bounded, let $B \in \beta$ be arbitrary, and let \overline{A} and \overline{B} be their closures in R^n . If we fix x, then the function of x which measures the distance to \overline{B} is a continuous semialgebraic function [2 2.5.8]. This takes a minimum on the closed bounded set \overline{A} . If $\mu(\alpha, \beta) = 0^+$, this minimum cannot be strictly positive, so $\overline{A} \cap \overline{B} \neq \emptyset$. We conclude that

$$\{ \overline{A} \cap \overline{B} \mid A \in \alpha, B \in \beta \}$$

has the finite intersection property and is contained in at least one ultrafilter γ . Since any closed set in α is in γ , $\alpha \to \gamma$. Similarly, $\beta \to \gamma$.

If α and β have no common specialization, we can find disjoint closed sets $A \in \alpha$ and $B \in \beta$ [7], and since we may choose A to be bounded, it is immediate that $\mu(\alpha, \beta) \ge d(A, B) = x > 0$ for some $x \in R$, so $\mu(\alpha, \beta) > 0^+$. \square

REFERENCES

- 1. E. Becker, On the real spectrum of a ring and its application to semialgebraic geometry, Bull. Amer. Math. Soc. 15 (1986), 19-60.
- 2. J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, New York, Berlin, and Heidelberg, 1987.
- L. Bröcker, Real spectra and distributions of signatures, Géométrie Algébrique Réelle et Formes Quadratiques, Lecture Notes in Math., vol. 959, Springer-Verlag, New York, Berlin, and Heidelberg, 1982.
- 4. J. H. Conway, On numbers and games, Academic Press, London and New York, 1976.
- J. Marti, Konvexe Analysis, Lehrbücher und Mono. aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe 54, Birkhaüser, Basel und Stuttgart, 1977.

- S. Prieß-Crampe, Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen, Ergebnisse der Mathematik und ihrer Grenzgebiete 98, Springer-Verlag, New York, Berlin, and Heidelberg, 1983.
- 7. R. Robson, Slices: Functions for abstract real analysis, real analytic and algebraic geometry, (M. Galbiati and A. Tognoli, eds.), Lecture Notes in Math., vol. 1420, Springer, 1990, pp. 206-222.

Department of Mathematics, Oregon State University, Corvallis, Oregon 97331-4605